安全评价论坛

标题: 矿山主要危害及安全技术措施 [打印本页]

作者: kassymhl    时间: 2007-2-15 17:49
标题: 矿山主要危害及安全技术措施
安全生产技术:第五章  矿山安全生产技术



第二节  矿山主要危害及安全技术措施



  一、矿井通风



  (一)矿井通风的目的



  供给矿井新鲜风量,冲淡并排出有毒、有害气体和矿尘,保证井下风流质量和数量符合国家安全卫生标准;创造安全、健康的工作环境,防止各种伤害和爆炸事故;保障井下人员身体健康和生命安全,保护国家资源和财产。






  (三)矿井供风标准



  矿井所需风量按下列要求分别计算并选取其中最大值:

  (1)井下同时工作的最多人数乘以单位时间内每人所需风量;

  (2)井下采煤、掘进、硐室和其他地点需风量的总和。



  (四)矿井反风



  为防止灾害扩大和抢救人员的需要而采取的迅速倒转风流方向的措施。

  1.矿井反风方式

  (1)全矿性反风。井下各主要风道的风流全部反向的反风。

  在矿井进风井、井底车场、主要进风大巷或中央石门发生火灾时常采用全矿性反风,避免火灾烟流进入人员密集的采掘工作面。

  (2)局部反风。在采区内部发生灾害时,维持主要通风机正常运转,主要进风风道风向不变,利用风门开启或关闭造成采区内部风流反向的反风。

  2.矿井反风注意事项

  (1)遵守《煤矿安全规程》对于矿井反风设施、主要通风机管理必须满足风流方向改变时间(10min)、反风后主要风机供风量(不少于正常供风量40%)、反风设施检查(至少每季度1次)和反风演习(每年1次)的规定。

  (2)反风演习应注意井下各区域的供风量变化、瓦斯浓度以及对火区和采空区气体的影响。

  (3)注意反风后影响区域人员的通讯联系和撤退。

  (4)平常对井下人员进行反风知识的教育。



  (五)矿井风流呈现压力及测定仪表



  1.静压

  单位体积空气具有的对外做功的机械能所呈现的压力,是风流质点热运动撞压器壁面而呈现的压力。

  绝对静压:单位体积空气的压能,以真空零压力为计量基准的静压值。常用空盒气压计、水银气压计或精密气压计等仪器测定。

  相对静压:井巷某点的绝对静压与该点同标高大气压力之差。常用皮托管和压差计配合测定。

  2.位压

  单位体积内空气在地球引力作用下,相对于某一基准面产生的重力位能所呈现的压力。水平巷道的风流流动无位压差,在非水平巷道,风流的位压差就是该区段垂直空气柱的重力压强。

  3.动压

  单位体积空气风流定向流动具有的动能所呈现的压力,又称为速压。风流动压通常用皮托管配合压差计测定。

  4.全压

  单位体积风流具有的(静)压能与动能所呈现的压力之和。

  5.总机械能(总压力)

  矿井风流在井巷某断面具有的总机械能等于其具有的(静)压能、位能和动能的总和。

  6.风流总能量

  矿井风流在井巷某断面具有的流动能量为其总机械能及内能之和。



  (六)矿井通风阻力



  矿井风流流动过程中,在各种阻滞力作用下,风流的部分机械能不可逆地转换为热能而引起的机械能损失。

  1.摩擦阻力(沿程阻力)

  矿井风流沿程流动过程中因与井巷壁面摩擦及风流内摩擦而产生的能量损失。

  2.局部阻力

  因井巷边壁条件变化,风流的均匀流动在局部地区因阻碍物(巷道断面突变、巷道弯曲、风流分合、断面阻塞等)的影响而被破坏,风流流速大小、方向或分布发生变化,产生涡流而造成的能量损失。

  3.通风阻力定律

  表示井巷通风阻力与风阻、风量之间的关系,其阻力与风量的平方成正比。

  4.降低通风阻力的措施

  扩大巷道断面、开掘关联风路、减少风路长度、使矿井总进风早分开和总回风晚汇合,选用摩擦阻力系数小的支护方式,尽量避免巷道急拐弯和风道断面突然变化、主要风道内禁止堆放木材等障碍物,等等。



  (七)矿井风阻



  描述矿井或井巷通风难易程度的指标,包括摩擦风阻和局部风阻。

  (1)井巷风阻:描述由一条或多条构成的通风网络的通风难易程度的指标。

  (2)矿井总风阻:描述一个矿井通风难易程度的指标,其值取决于通风网络结构和各风路的风阻值。

  (3)风阻特性曲线:表示矿井或井巷的通风阻力和风量关系特征的曲线,又称为阻力特性曲线。






  (九)局部通风



  1.局部通风的技术管理和主要安全措施

  (1)保证工作面有足够的新鲜风量。不准随意停风和减少风量;提高有效风量。

  (2)保证局部通风机安全运转。

  2.局部风量调节

  在采区内,采区之间和生产水平之间的风量调节称为局部风量调节。

  3.风筒(导风筒)

  引导风流沿一定方向流动的管道。



  (十)矿井漏风



  (1)漏风及产生原因。矿井通风中漏风是普遍存在的现象,减少漏风是通风管理部门的基本任务,产生漏风的主要原因是有裂隙通道并有风压差的存在。

  (2)漏风对矿井通风的不利影响。大量漏风会造成动力的额外消耗;使矿井、采区和工作面的有效风量(送达用风地点的风量)减少,造成瓦斯积聚、气温升高等,影响生产和工人身体健康;大量的漏风会使通风系统稳定性降低,风流易紊乱,调风困难,易发生瓦斯事故;会使采空区、被压碎的煤柱和封闭区内的煤炭及可燃物发生氧化自燃,易发生火灾;当地表有塌陷区时,采空区裂隙的漏风会将采空区的有害气体带入井下,使井下环境条件恶化而威胁安全生产。

  (3)漏风风流的流动状态。漏风风流的流动状态有层流和紊流两种,与漏风介质的孔隙率有关,孔隙率小呈层流状态,孔隙率大呈紊流状态。



  二、煤矿瓦斯



  (一)瓦斯的基本概念



  1.矿井气体的组成

  国内外对煤层瓦斯组分的大量测定表明,其中可能含有约20种气体:甲烷及其同系烃类气体(乙烷、丙烷、丁烷、戊烷、己烷等)、二氧化碳、氮、二氧化硫、一氧化碳和稀有气体(氦、氖、氩、氪、氙)等。但最主要的成分为甲烷,按体积比例可达70%~99%,平均在90%以上;其次为氮气和二氧化碳,平均含量分别为3%~4%,而其他气体成分的含量通常都是非常低的。

  2.煤层瓦斯赋存状态

  瓦斯在煤层中的赋存形式主要有以下两种状态:游离状态(也称自由状态)、吸附状态。



  (二)煤层瓦斯含量及压力



  1.煤层瓦斯含量

  煤层瓦斯含量是指单位质量煤体中所含瓦斯的体积,一般用m3/t表示,煤层瓦斯含量是确定矿井瓦斯涌出量的基础数据,是矿井通风及瓦斯抽放设计的重要参数。煤层在天然条件下,未受采动影响时的瓦斯含量称原始含量;受采动影响,已有部分瓦斯排出后而剩余在煤层中的瓦斯量,称残存瓦斯含量。

  影响煤层原始瓦斯含量的因素很多,主要有煤化程度、煤层赋存条件、围岩性质、地质构造、水文地质条件。

  2.瓦斯含量的测定方法

  煤层瓦斯含量测定方法目前主要有地勘钻孔测定法,实验室间接测定法和井下快速直接测定法3种。

  3.煤层瓦斯压力及测定方法

  (1)煤层瓦斯压力存在于煤层孔隙中的游离瓦斯分子热运动对煤壁所表现的作用力。煤层瓦斯压力是用间接法计算瓦斯含量的基础参数,也是衡量煤层瓦斯突出危险性的重要指标。

  (2)测定方法。直接测定法、间接测压法。



  (三)矿井瓦斯涌出量



  1.矿井瓦斯涌出的形式

  煤层被开采时,煤体受到破坏或采动影响,贮存在煤体内的部分瓦斯就会离开煤体而涌入采掘空间,这种现象称为瓦斯涌出。矿井瓦斯涌出形式可分普通涌出和特殊涌出两种。

  2.影响瓦斯涌出量的主要因素

  影响矿井瓦斯涌出量的因素主要有煤层瓦斯含量、开采规模、开采程序、采煤方法与顶板管理方法、生产工序、地面大气压力的变化、通风方式、采空区管理方法。

  3.矿井瓦斯涌出量的表示方法

  矿井瓦斯涌出量是指开采过程中正常涌入采掘空间的瓦斯数量,通常用单位时间或单位质量的煤所放出的瓦斯数量来表示,瓦斯涌出量的表示与计算方法有以下两种:绝对瓦斯涌出量、相对瓦斯涌出量。

  4.矿井瓦斯涌出量的测定

  《煤矿安全规程》规定,一个矿井中只要有一个煤(岩)层发现瓦斯,该矿井即为瓦斯矿井,瓦斯矿井必须依照矿井瓦斯等级进行管理。矿井瓦斯等级,根据矿井相对瓦斯涌出量、矿井绝对瓦斯涌出量和瓦斯涌出形式划分为:低瓦斯矿井、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井。每年必须对矿井进行瓦斯等级和二氧化碳涌出量的鉴定工作。

  5.矿井瓦斯涌出量预测

  新矿井、新水平和新采区投产前,都应进行矿井瓦斯涌出量预测,现有的矿井瓦斯涌出量预测方法可以概括为两大类:一是矿山统计预测法,二是根据煤层瓦斯含量进行预测的分源预测法。



  (四)瓦斯燃烧与爆炸



  瓦斯的主要成分,甲烷是一种无色、无味、无臭的气体,密度为0.714kg/m3,与空气的密度比为0.554,比空气轻,容易积聚在空气上层。瓦斯无毒,但当浓度很高时,会引起窒息。矿井瓦斯不助燃,但它与空气混合达一定浓度后,遇火能燃烧、爆炸。矿井瓦斯爆炸往往引起煤尘爆炸,瓦斯爆炸和瓦斯煤尘爆炸事故是恶性事故。




  (五)矿井瓦斯的喷出



  矿井瓦斯喷出与突出是煤矿瓦斯特殊涌出的两种主要形式,都是由于瓦斯和地压所引起的一种动力现象,特别是突出对矿井安全生产的威胁最为严重。

  瓦斯喷出的预兆:矿压活动显现激烈,煤壁片帮严重、底板突然鼓起、支架承载离加大甚至破坏,煤层变软、潮湿等。

  预防瓦斯喷出的措施:加强矿井地质工作,摸清采掘地区的地质构造情况;在可能发生喷出的地区掘进巷道时,应打钻孔预先探放高压瓦斯气源;掌握喷出的预兆,及时撤离工作人员;掌握矿压规律,避免矿压集中,及时处理顶板,促使其随采随冒及时充填采空区。



  (六)煤与瓦斯突出



  煤与瓦斯突出是指在采掘过程中,大量瓦斯和煤炭(岩石)在短时间内(几秒或几分钟)突然从煤层(岩层)中冲出的现象。它具有突发性、极大破坏性和瞬间携带大量瓦斯和煤(岩)冲出等特点。

  1.煤与瓦斯突出的一般规律

  (1)突出危险性随采掘深度的增加而增加;

  (2)突出危险性随煤层厚度的增加而增加,尤其是软分层厚度;

  (3)石门揭煤工作面平均突出强度最大,煤巷掘进工作面突出次数最多,放炮作业最易引发突出,采煤工作面突出防治技术难度最大;

  (4)突出多数发生在构造带、煤层遭受严重破坏的地带、煤层产状发生显著变化的地带、煤层硬度系数小于0.5的软煤层中;

  (5)突出发生前通常有地层微破坏、瓦斯涌出变化、煤层层理紊乱、钻孔卡钻夹钻、煤壁温度降低、散发煤油气味、煤层产状发生变化等预兆;

  (6)突出按动力源作用特征可分为三种类型:突出、压出和倾出;按突出物分类可分为四种类型:煤与瓦斯突出、煤与二氧化碳突出、岩石与瓦斯突出、岩石与二氧化碳突出。

  2.煤与瓦斯突出机理

  煤与瓦斯突出的机理有许多种假设,但基本公认的是综合假说,即煤与瓦斯突出是由地应力、瓦斯和煤的物理力学性质三者综合作用的结果。

  3.煤与瓦斯突出预测

  矿井在采掘生产过程中,只要发生过一次煤与瓦斯突出,该矿井即确定为突出矿井,发生突出的煤层即定位突出危险煤层。

  突出危险区域预测通常采用瓦斯地质统计法、物探法、综合指标法。

  工作面突出预测主要通过向采掘工作面前方煤体中施工钻孔,利用钻孔测定与地应力、瓦斯、煤的物理力学性质有关的指标,根据这些指标判断采掘工作面前方是否具有突出危险性。

  4.防治煤与瓦斯突出的措施

  (1)“四位一体”综合防治突出措施。所谓“四位一体”综合防治突出措施,就是说首先应对开采煤层及其对开采煤层构成影响的邻近煤层进行突出危险性预测。对确认的突出危险区域,应采取区域性防治突出技术措施,对确认的突出危险工作面,必须采取防治突出技术措施。在采取防治突出技术措施后,必须对防治突出技术措施消除突出危险性的效果进行检验。如果检验有效,在采取安全防护措施的前提下进行采掘作业;如果检验无效,必须补充防治突出技术措施,直至再次检验为有效时方可在采取安全防护措施前提下进行采掘作业。否则,必须继续补充技术措施。

  (2)防治突出的技术措施。防治突出的技术措施主要分为区域性措施和局部性措施两大类。区域性措施是针对大面积范围消除突出危险性的措施,局部性措施主要在采掘工作面执行。针对采掘工作面前方煤岩体一定范围消除突出危险性的措施,目前区域性措施主要有3种:开采保护层、大面积瓦斯预抽放、控制预裂爆破;局部性措施有许多种,如卸压排放钻孔、深孔或浅孔松动爆破、卸压槽、固化剂、水力冲孔、金属骨架等。

  (3)安全防护措施。安全防护措施是控制突出危害程度的措施,也就是说即使发生突出,也要使突出强度降低,对现场人员进行保护以免危及人身安全。如震动性放炮、远距离放炮、反向防突风门、压风自救器、个体自救器等。



  (七)矿井瓦斯抽放



  1.瓦斯抽放方法

  瓦斯抽放系统主要由瓦斯抽放泵、瓦斯抽放管路(带阀门)、瓦斯抽放钻孔或巷道、钻孔或巷道密封等组成。根据抽放瓦斯的来源,瓦斯抽放可以分为:本煤层瓦斯预抽、邻近层瓦斯抽放、采空区瓦斯抽放、几种方法的综合抽放。




  三、矿山粉尘



  (一)煤矿粉尘的基本概念



  1.煤矿粉尘的概念

  煤矿生产过程中随着煤、岩石被破碎而产生的煤、岩石和其他物质的细微颗粒总称为煤矿粉尘。有的情况下也被称为生产性粉尘或矿尘。

  按其组成成分,煤矿粉尘主要分为煤尘和岩尘。

  2.粉尘防治的主要概念

  (1)全尘:也被称为总粉尘,是指用一般敞口采样器采集到一定时间内悬浮在空气中的全部固体微粒。

  (2)呼吸性粉尘:能被吸入人体肺部并滞留于肺泡区的浮游粉尘。其空气动力直径小于7.07 mm的极细微粉尘,是引起尘肺病的主要粉尘。

  (3)浮游粉尘:能在矿井空气中悬浮的粉尘,也称浮尘。

  (4)沉积粉尘:矿井内,因自重而降落,沉积在巷道顶、帮、底板和物体上的粉尘。也称为落尘或积尘。

  (5)粉尘浓度:单位体积空气中所含粉尘的质量(mg/m3)或颗粒数(粒/cm3)。

  (6)粉尘粒度分布:又称为粉尘分散度。在含尘空气中,各种不同粒径粉尘的质量或颗粒数占粉尘总质量或总颗粒数的百分比。

  (7)游离二氧化硅:岩石或矿物中没有同金属或金属氧化物结合的二氧化硅。

  (8)尘肺病:由于长期吸入大量细微粉尘而引起的以肺组织纤维化为主的职业病。

  (9)矽肺病:也称为硅肺病,由于长期吸人大量含结晶型游离二氧化硅的岩尘所引起的尘肺病。

  (10)煤肺病:由于长期吸人煤尘所引起的尘肺病。

  (11)煤矿肺病:也称为煤硅肺病,由于长期吸入煤尘及含游离二氧化硅的岩尘所引起的尘肺病。

  (12)气溶胶:固体或液体微小颗粒分散于空气中的分散体系称为气溶胶。煤矿粉尘分散在矿井空气中即所谓的含尘空气就构成为一个分散体系,空气是分散介质,粉尘是分散相。

  (13)煤尘爆炸:悬浮在空气中的煤尘,在一定条件下,遇高温热源而发生剧烈氧化反应,并伴有高温和压力上升、对周围环境产生巨大破坏的现象。

  (14)煤矿防尘:降低煤矿内粉尘浓度及防止煤尘爆炸的技术。



  (二)煤矿粉尘的产生及基本性质



  1.煤矿粉尘的产生

  煤矿生产的主要环节如采煤、掘进、运输、提升的几乎所有作业工序都不同程度地产生粉尘。

  2.影响粉尘产生的因素

  采掘机械化和开采强度、采煤方法和截割参数、作业地点的通风状况、地质构造及煤层赋存条件。

  3.煤矿粉尘的基本性质

  (1)粉尘分散度。粉尘颗粒的大小的组成情况可以用分散度(即粒度分布)来表示。生产环境中空气动力直径小于7.1μm的尘粒,尤其是小于2μm的尘粒是引起尘肺病的主要有害粉尘。

  (2)粉尘的吸附性。粉尘的吸附能力与粉尘颗粒的表面积有密切关系,分散度越大,表面积也越大,其吸附能力也增强。主要指标有吸湿性、吸毒性。

  (3)粉尘的荷电性。粉尘粒子可以带有电荷,其来源是煤岩在粉碎中因摩擦而带电,或与空气中的离子碰撞而带电,尘粒的电荷量取决于尘粒的大小并与温、湿度有关,温度升高时荷电量增多,湿度增高时荷电量降低。

  (4)粉尘的密度。单位体积粉尘的质量称为粉尘的密度,这里指的粉尘体积,不包括尘粒之间的空隙,该密度称为粉尘的真密度。

  (5)粉尘的安息角。粉尘的安息角是评价粉尘流动性的重要指标。

  (6)煤尘的爆炸性。煤被破碎成细小的煤尘后,比表面积大大增加,系统的自由表面能也相应增加,提高了煤尘的化学活性,特别是提高了氧化发热的能力。

  4.煤尘爆炸的条件

  煤尘自身具有爆炸性、着火源、空气中的氧气浓度是煤尘爆炸的三个条件。煤尘爆炸是剧烈的氧化反应,空气中氧气浓度是决定该反应能否进行的先决条件。



  (三)煤矿粉尘防治技术



  1.采煤工作面防尘

  (1)煤层注水防尘技术;

  (2)合理选择采煤机截割机构;

  (3)喷雾降尘。

  2.炮掘工作面防尘

  风动凿岩机或电煤钻打眼是炮掘工作面持续时间长,产尘量高的工序,一般干打眼工序的产尘量占炮掘工作面总产尘量的80%~90%,湿式打眼时占40%~60%。所以,打眼防尘是炮掘工作面防尘的重点。

  1)打眼防尘

  (1)风钻湿式凿岩。这是国内外岩巷掘进行之有效的基本防尘方法。

  (2)干式凿岩捕尘。在无法实施湿式凿岩作业时,如岩石遇水会膨胀、岩石裂隙发育、实施湿式防尘效果差等情况下,可用干式孔口捕尘器等干式孔口除尘技术。

  (3)煤电钻湿式打眼。在煤巷、半煤巷炮掘中,采用煤电钻湿式打眼能获得良好的降尘效果,降尘率可达75%~90%。

  2)爆破防尘

  爆破是炮掘工作面产尘最大的工序,采取的防尘措施主要有以下几种:

  (1)水炮泥。这是降低爆破时产尘量最有效的措施。

  (2)爆破喷雾。这是简单有效的降尘措施,在爆破时进行喷雾可以降低粉尘浓度和炮烟。

  3.机掘工作面通风除尘

  机掘工作面虽然采掘机械本身已有了相应的防尘措施,但一些细微的粉尘仍然是悬浮于空气中,尤其是掘进机械化程度的不断提高,产尘强度剧增,机掘工作面的产尘强度就大大高于炮掘工作面,用一般的防尘措施难于控制粉尘。因此国内外研究了通风除尘技术,以便有效地控制高浓度尘源。

  (1)通风除尘系统。合理的通风除尘系统是控制工作面悬浮粉尘运动和扩散的必要条件,主要有3种通风系统在国内外使用:长压短抽通风除尘系统、长抽通风除尘系统、长抽短压通风除尘系统。

  (2)通风除尘设备。湿式除尘风机、湿式除尘器、袋式除尘器以及配套的抽出式伸缩风筒、附壁风筒等是主要的通风除尘设备。

  (3)通风工艺的要求。压、抽风筒口相互位置的关系、压抽风量的匹配、局部通风机安装位置;抽出式局部通风机与除尘局部通风机的串联要求是除尘对通风工艺的要求。

  4.锚喷支护防尘。

  锚喷支护技术发展很快,它也是煤矿的主要产尘源之一。锚喷支护的粉尘主要来自打锚杆眼、混合料转运、拌料和上料、喷射混凝土以及喷射机自身等生产工序和设备。

  针对这些产尘源,主要采取以下防尘措施:

  (1)打锚杆眼的防尘措施。打锚杆眼防尘的重点是解决打垂直顶板锚杆眼和倾斜角较大的锚杆眼时打眼过程的产尘。

  (2)喷射混凝土支护作业的防尘措施。改干喷为潮喷是降低喷射混凝土工序粉尘浓度最有效的措施。

  5.运输、转载防尘

  (1)机械控制自动喷雾降尘装置。该类装置的特点是结构简单、容易制造,使用和维护方便而且降尘效果好。

  (2)电器控制自动喷雾降尘装置。该装置适用于煤矿转载运输系统中不同的尘源,它是靠电器控制实现自动喷雾。有光控、声控、触控、磁控等多种形式。



  (四)煤尘爆炸防治技术



  1.煤尘爆炸性评价方法

  (1)煤尘爆炸指数。这一指标可用可燃挥发分含量进行初步判定。在煤矿设计时,可燃挥发分含量可作为判定煤尘爆炸危险的指标。

  (2)煤尘爆炸性鉴定。虽然用煤尘爆炸指数可以判定其爆炸性,但鉴于煤种和煤质的复杂性,爆炸指数只是一个初步判断。还必须按《煤矿安全规程》规定进行煤尘爆炸性鉴定试验。我国标准中规定,采用大管状煤尘爆炸鉴定装置进行试验,并由国家授权单位承担鉴定试验。

  2.防止煤尘爆炸的技术措施

  如前所述,煤尘爆炸必须在三个条件同时具备时才可能发生,如果不让这些条件同时存在,或者破坏已经形成的这些条件在,就可以防止煤尘爆炸的发生和发展。这是制定各种防止煤尘爆炸措施的出发点和基本原则。

  (1)防止煤积聚的措施。一般情况下,生产场所的浮游煤尘浓度是远低于煤尘爆炸下限浓度的。但是,因空气震荡(爆破的冲击波)等原因使沉积煤尘重新飞扬起来,这时的煤尘浓度大大超过爆炸下限浓度。据估算4m2断面的小巷道的周边上,只要沉积0.04 mm厚的一层煤尘,当它全部飞扬起来,就达到了爆炸下限。实际上,井下的沉积煤尘都超过了这个厚度,所以,减少巷道内的沉积煤尘量并清除出井,是最简有效的防爆措施。

  各生产环节采用有效的防尘、降尘措施,减少了煤尘的产生,降低了空气中的煤尘浓度,也就降低了沉积煤尘量。因此,综合防尘措施既是减少粉尘危害工人健康的措施。也是防止煤尘爆炸的治本措施。

  (2)杜绝着火源。井下能引起煤尘爆炸的着火源有电气火花、摩擦火花、摩擦热,煤自燃而形成的高温点、爆破作出现的爆燃以及瓦斯爆炸所产生的高温产物等。消除这类着火源的主要技术措施有:保持矿用电气设备完好的防爆性能,加强管理防止出现电器设备失爆现象,选用非着火性轻合金材料避免产生危险的摩擦火花,输送带、风筒、电缆等常用的非金属材料必须具有阻燃、抗静电性能,采用阻化剂、凝胶或氮气防止煤柱、采空区残留煤发生自燃。除采取上述技术措施外,同时还要加强瓦斯管理防止瓦斯爆炸事故的发生。

  由于煤矿自然条件十分复杂,发生煤尘爆炸的随机性很大,除了上述一般性的安全技术措施外,针对煤尘爆炸的特点,各国还研究了防止煤尘爆炸的专门技术。其中使用历史最长、应用面广、简单易行的防止煤尘爆炸技术措施是撒布岩粉法。

  (3)撒布岩粉法。这种方法是定期向巷道周边撒布惰性岩粉,用它覆盖沉积在巷道周边上的沉积煤尘。岩粉层在巷道风速很低时,它的粘滞性起到了阻碍沉积煤尘重新飞扬的作用。

  当发生瓦斯爆炸等异常情况时,巨大的空气震荡风流把岩粉和沉积煤尘都吹扬起来形成岩粉一煤尘混合尘云。当爆炸火场进入混合尘云区域时,岩粉吸收火焰的热量使系统冷却,同时岩粉粒子还会起到屏蔽作用,阻止火焰或燃烧的煤粒向未烧着的煤尘粒子传递热量,最终达到阻止煤尘着火的目的。这一方法在英、美、俄等主要产煤国家大量应用,而且效果显著。

  3.防止煤尘爆炸传播技术

  防止煤尘爆炸传播技术也称为隔绝煤尘爆炸传播技术(以下简称隔爆技术),是指把已经发生的爆炸控制在一定范围内并扑灭以防止爆炸向外传播的技术措施。该技术不仅适于对煤尘爆炸的控制,也适用于对瓦斯爆炸、瓦斯煤尘爆炸的控制。该技术分为两大类:被动式隔爆技术和自动式隔爆技术。

  (1)被动式隔爆技术(也称隔爆措施)。发生爆炸的初期,爆炸火焰峰面是超前于爆炸压力波向前传播的,随着爆炸反应的继续和加强,压力波逐渐赶上并超前于火焰峰面传播,两者之间有一时间差。被动式隔爆技术就是利用这一规律,利用压力波的能量使隔爆措施动作,在巷道内形成扑灭火焰的消焰抑制剂尘云,后续到达到的火焰进入抑制剂尘云时被扑灭,阻止了爆炸继续向前传播。被动式隔爆技术主要有:岩粉棚、水槽棚和水袋棚,统称为被动式隔爆棚。

  被动式隔爆棚的设置方式有3种形式:集中式布置、分散式布置和集中分散式混合布置。根据隔爆棚在井巷系统中限制煤尘爆炸的作用和保护范围,可将它们分为主要隔爆棚(重型棚)和辅助隔爆棚(轻型棚)。重型棚的作用是保护全矿性的安全,在矿井两翼与井筒相通的主要运输大巷和回风大巷、相邻煤层之间的运输和回风石门、相邻采区之间的集中运输巷和回风巷内设置。轻型棚的作用是保护一个采区的安全,在采煤工作面的进风、回风巷和采区内的煤及半煤岩掘进巷道以及采用独立通风并有煤尘爆炸危险的其他巷道内设置。

  (2)自动隔爆技术。被动式隔爆技术的作用原理决定了该技术措施只能在距爆炸源60~200m(岩粉棚300m)范围内发挥抑制爆炸的作用。因此,在爆炸发生的初期该技术是无效的。此外,在低矮、狭窄和拐弯多的巷道中使用也极其不利,不能发挥抑爆效果。针对这些缺点各国研究并使用了自动隔爆技术。

  传感器、控制器和喷洒装置是自动隔爆装置三大组成部分,由若干台自动隔爆装置组成的隔爆系统即为自动式隔爆措施。传感器主要有3类:接受瓦斯煤尘爆炸动力效应的压力传感器、利用爆炸热效应的热电传感器和利用爆炸火焰发出的光效应的光电传感器;控制器是向喷洒抑制剂的执行机构发出动作指令的仪器;喷洒装置一般由执行机构、喷撒器和抑制剂储存容器组成。它的作用是将抑制剂(岩粉、干粉或水)扩散于巷道空间形成粉尘云或水雾带,其动作应迅速、可靠、能适应爆炸的快速发展。

  抑制剂的选择原则是抑制火焰用量少、效果好、价格便宜。虽然岩粉在煤矿应用最广,但是在弱的瓦斯煤尘爆炸条件下,以及在剧烈的强爆炸时,它的抑制效果并不理想。适用于自动隔装置的抑制剂主要有液体抑制剂水、水加卤代烷、粉末无机盐类抑制剂和卤代烷。粉末无机盐类有(NH4)H2PO4、NaCl、KCl、KHCO3、NaHCO3、CaCO3等粉剂。卤代烷有二氟一氯一溴甲烷等,虽然灭火效果好,但它有破坏臭氧层的缺点,已禁用。



  (五)粉尘检测技术



  粉尘检测是以科学的方法对生产环境空气中粉尘的含量及其物理化学性状进行测定、分析和检查的工作。从安全和卫生学的角度出发,日常的粉尘检测项目主要是粉尘浓度、粉尘中游离二氧化硅含量和粉尘分散度(也称为粒度分布)的检测。

  1)粉尘浓度测定

  矿的粉尘浓度测定主要有滤膜测尘法和快速直读测尘仪测定法。

  (1)滤膜测尘法。测尘原理是用粉尘采样器(或呼吸性粉尘采样器)抽取采集一定体积的含尘空气,含尘空气通过滤膜时,粉尘被捕集在滤膜上,根据滤膜的增重计算出粉尘浓度。

  (2)快速直读测尘仪测尘法。用滤膜采样器测尘是一种间接测量粉尘浓度的方法,由于准备工作,粉尘采样和样品处理时间比较长,不能立即得到结果,在卫生监督和评价防尘措施效果时显得不方便。为了满足这方面工作特点的需要,各国研制开发了可以立即获得粉尘浓度的快速测定仪。

  2)粉尘游离二氧化硅的测定

  国家标准中规定的测定方法是焦磷酸质量法,也有用红外分光光度计测定法进行测定。

  (1)焦磷酸质量法。在245~250 ℃的温度下,焦磷酸能溶解硅酸盐及金属氧化物,对游离二氧化硅几乎不溶。因此,用焦磷酸处理粉尘试样后,所得残渣的质量即为游离二氧化硅的量,以百分比表示。为了求得更精确的结果,可将残渣再用氢氟酸处理,经过这一过程所减轻的质量则为游离二氧化硅的含量。

  (2)红外分光分析法。当红外光与物质相互作用时,其能量与物质分子的振动或转动能级相当时会发生能级的跃迁,即分子电低能级过渡到高能级。其结果是某些波长的红外光被物质分子吸收产生红外吸收光谱。游离二氧化硅的吸收光谱的波数为800cm—1、780cm—1、694cm—1(相当于波长为12.5μm、12.8μm、14.4μm)。

  (3)粉尘分散度的测定。粉尘分散度分为数量分散度和质量分散度。前者是针对具有代表性的一定数量的样品逐个测定其粒径的方法。其测定方法主要有显微镜法、光散射法等。测得的是各级粒子的颗粒百分数。后者是以某种手段把粉尘按一定粒径范围分级,然后称取各部分的质量,求其粒径分布,常采用离心、沉降或冲击原理将粉尘按粒径分级,测出的是各级粒子的质量百分数。



  四、矿山火灾



  (一)煤矿火灾的定义、分类及危害



  1.煤矿火灾

  煤矿火灾是指发生在煤矿企业生产范围之内,并造成人员伤亡、资源损失、环境破坏、设备或工程设施毁坏以及严重威胁正常生产的非控制性燃烧。煤矿火灾的三要素:可燃物、热源、氧气。

  2.煤矿火灾的分类

  根据引燃源的不同煤矿火灾可分为内因火灾和外因火灾。

  煤矿火灾根据火灾发生的性质也可分为原生火灾和再生火灾。

  根据火灾发生的地点及其所在巷道的风流流动方向的不同,煤矿火灾为又可分为上行风流火灾、下行风流火灾和进风流火灾。

  3.煤矿火灾的危害

  煤矿火灾的发生具有严重的危害性,主要表现以下几个方面:人员伤亡、矿井生产接续紧张、巨大的经济损失、严重的环境污染。






  (三)煤自然发火危险性评价及早期预测预报



  1.煤自然发火危险性评价

  煤自然发火危险性评价技术是在煤层尚未出现自然发火征兆之前,根据煤层的赋存条件、开拓开采条件以及煤本身的氧化放热升温特性等因素,采取不同的方法对煤层自然发火的危险程度、自然发火期、易自燃危险区域等重要火灾参数指标做出超前判识的一种技术。主要内容有自燃倾向性预测法、因素综合评判预测法、经验统计预测法和数学模型预测法。

  2.煤炭自然发火的早期预测预报

  井下发生自然发火时,往往会出现一些征兆,如温度升高、湿度增加、出现煤焦油味、人体不适、出现烟雾或明火等。

  (1)煤自然发火气体产物及其组成。煤自燃气体产物是指煤由于自燃而释放出来的气体。这其中包括两部分,一部分由于煤自身氧化产生的气体产物,叫煤自燃氧化气体;另一部分是成煤过程中吸附在其孔隙内的气体,由于煤体温度升高而解吸出来的,叫煤自燃吸附气体。

  (2)煤自然发火的标志气体及其指标。一氧化碳指标、一氧化碳的派生指标、烯烃及烯烷比、炔烃。

  (3)煤自然发火预测预报方法。预报方法主要有气体分析法、测温法、气味检测法。



  (四)内因火灾防治基本知识



  1.煤自燃倾向性

  煤炭自燃倾向性的鉴定方法很多,国内外较为成熟的方法主要有奥氏法、静态吸氧法、量热法以及动态吸氧法、交叉点温度法等。

  2.煤炭自然发火期

  煤炭自然发火是一渐变过程,要经过潜伏期、自热期等多个阶段,因此,具有自燃倾向性的煤层被开采破碎后,要经过一定的时间才会自然发火,这一时间间隔叫做煤层的自然发火期。自然发火期是煤层自燃危险在时间上的量度,自然发火期愈短的煤层,其自燃危险性愈大。目前,我国通常采用统计比较法和类比法确定煤层的最短自然发火期。

  3.内因火灾防治方法及适用条件

  现阶段,煤矿所采用的内因火灾的灭火技术主要有灌浆灭火、均压灭火、阻化灭火、惰气压注灭火以及新型的凝胶灭火、泡沫灭火等技术手段。



  (五)外因火灾防治基本知识



  外因火灾是由外部火源引起的火灾,其发生和发展都比较突然和迅猛,并伴有大量烟雾和有害气体。

  外因火灾主要包括电气火灾和带式输送机火灾。电气火灾是指发生在各种电气设备上的火灾,常因供电过负荷、电气元件接触不良、操作失误产生电弧火花引发。带式输送机火灾是指因输送带由于跑偏、安装不当等,与托辊等摩擦生热引起的火灾。



  (六)火区封闭、管理与启封基本技术



  1.火区密封技术

  当防治火灾的措施失败或因火势迅猛来不及采取直接灭火措施时,就需要及时封闭火区,防止火灾势态扩大。火区封闭的范围越小,维持燃烧的氧气越少,火区熄灭也就越快。因此火区封闭要尽可能地缩小范围,并尽可能地减少防火墙的数量。

  (1)防火墙及其位置的选择应遵循的原则。这些原则有:防火墙要选用不燃性材料构筑;低瓦斯火区的防火墙位置应尽可能地接近火区,以缩小火区封闭范围;高瓦斯火区应根据具体情况而定,具有瓦斯爆炸危险时,可适当扩大火区封闭范围;构筑防火墙的位置应尽可能地设在坚实的岩石巷道内,当岩石巷道离火区较远时,可将防火墙设在煤巷或无裂隙的矿体上,但是要把防火墙周围巷道壁加固、喷涂加以严密的封闭;防火墙应构筑在新鲜风流能够到达的地方,便于日后火区观测,以免形成“盲巷”,防火墙距新鲜风流的距离应在5~10 m;防火墙要设立在运输巷附近,便于运料施工,以免引起运输不便而延误时间,使火势扩大。

  (2)防火墙的布置及封闭顺序。用隔绝法扑灭火灾时,要求封闭的空间尽量缩小,防火墙的数量尽量少,构筑密闭的时间则尽可能地快。

  为了便于隔离火区,应首先封闭或关闭进风侧的防火墙,然后再封闭回风侧的防火墙,同时,还应优先封闭向火区供风的主要通道(或主干风流),然后再封闭那些向火区供风的旁侧风道(或旁侧风流)。在高瓦斯区密闭和火源之间有瓦斯源存在时,封闭进风侧的防火墙更危险一些。这种情况下,首先封闭回风侧防火墙更好一些。因为它能够在火区内造成正压,对采空区瓦斯的涌出具有一定的抑制作用。

  2.火区快速封闭技术

  轻质膨胀型封闭堵漏材料——聚氨酯是一种新型的具有独特性能和多方面用途的快速封闭材料,聚氨酯材料以多元醇和异氰酸酯为基料加聚而成,具有气密性好、粘结力强、可发泡膨胀、耐高温、防渗水隔潮等特点,已广泛地应用于各行各业,煤矿井下主要用于建立快速密闭时的喷涂密封、煤壁喷涂堵漏风等。

  3.火区管理技术

  火区封闭以后,虽然可以认为火势已经得到了控制,但是对矿井防灭火工作来说,这仅仅是个开始,在火区没有彻底熄灭之前,应加强火区的管理。火区管理技术工作包括对火区所进行的资料分析、整理以及对火区的观测检查等工作。

  绘制火区位置关系图应标明所有火区和曾经发火的地点,并注明火区编号、发火时间、地点、主要监测气体成分、浓度等。并针对每一个火区,都必须建立火区管理卡片,包括火区登记表、火区灌注灭火材料记录表和防火墙观测记录表等。

  4.火区启封技术

  1)判别火区熄灭程度的标志气体

  关于火区启封的条件,其主导思想是建立在以一氧化碳为主要气体指标的基础之上的。建议采用一氧化碳、乙烯和乙炔作为标志气体用于判断自然发火熄灭程度。


  3)火区启封

  (1)锁风启封火区。锁风启封火区也称分段启封火区,适用于火区范围较大,难以确认火源是否彻底熄灭或火区内存积有大量的爆炸性气体的情况下。启封的过程中,应当定时检查火区气体、测定火区气温,如发现有自燃征兆,要及时处理,必要时应重新封闭火区。

  (2)通风启封火区。通风启封火区也称为一次性打开火区。适用于火区范围较小并确认火源已经完全熄灭的情况下。启封前要事先确定好有害气体的排放路线,撤出该路线上的所有人员。然后,选择一个出风侧防火墙,首先打开一个小孔进行观察,无异常情况后再逐步扩大,直至将其完全打开,但严禁将防火墙一次性全部打开。



  五、矿山水害



  (一)矿井涌水特征



  1.大气降水为主要充水水源的涌水特征

  这里主要指直接受大气降水渗入补给的矿床,多属于包气带中、埋藏较浅、充水层裸露、位于分水岭地段的矿床或露天矿区。其充(涌)水特征与降水、地形、岩性和构造等条件有关。

  (1)矿井涌水动态与当地降水动态相一致,具明显的季节性和多年周期性的变化规律。

  (2)多数矿床随采深增加矿井涌水量逐渐减少,其涌水高峰值出现滞后的时间加长。

  (3)矿井涌水量的大小还与降水性质、强度、连续时间及入渗条件有密切关系。

  2.以地表水为主要充水水源的涌水特征

  地表水充水矿床的涌水规律有:

  (1)矿井涌水动态随地表水的丰枯呈季节性变化,且其涌水强度与地表水的类型、性质和规模有关。受季节流量变化大的河流补给的矿床,其涌水强度亦呈季节性周期变化。有常年性大水体补给时,可造成定水头补给稳定的大量涌水,并难于疏干。有汇水面积大的地表水补给时,涌水量大且衰减过程长。

  (2)矿井涌水强度还与井巷到地表水体间的距离、岩性与构造条件有关。一般情况下,其间距愈小,则涌水强度愈大;其间岩层的渗透性愈强,涌水强度愈大;当其间分布有厚度大而完整的隔水层时,则涌水甚微,甚或无影响;其间地层受构造破坏愈严重,井巷涌水强度亦愈大。

  (3)采矿方法的影响。依据矿床水文地质条件选用正确的采矿方法,开采近地表水体的矿床,其涌水强度虽会增加,但不会过于影响生产。如选用的方法不当,可造成崩落裂隙与地表水体相通或形成塌陷,发生突水和泥沙冲溃。

  3.以地下水为主要充水水源的矿床

  能造成井巷涌水的含水层称矿床充水层。当地下水成为主要涌水水源时,有如下规律:

  (1)矿井涌水强度与充水层的空隙性及其富水程度有关。

  (2)矿井涌水强度与充水层厚度和分布面积有关。

  (3)矿井涌水强度及其变化,还与充水层水量组成有关。

  4.以老采空区水为主要充水水源的矿床

  在我国许多老矿区的浅部,老采空区(包括被淹没井巷)星罗棋布,且其中充满大量积水。它们大多积水范围不明,连通复杂,水量大,酸性强,水压高。如现生产井巷接近或崩落带达到老采空区,便会造成突水。



  (二)矿井涌水通道



  矿体及其周围虽有水存在,但只有通过某种通道,它们才能进入井巷形成涌水或突水,这是普遍规律。涌水通道可分为两类:

  1.地层的空隙、断裂带等属于自然形成的通道

  (1)地层的裂隙与断裂带。坚硬岩层中的矿床,其中的节理型裂隙较发育部位,彼此连通时可构成裂隙涌水通道。依据勘探及开采资料,我们把断裂带分为两类,即隔水断裂带和透水断裂带。

  (2)岩溶通道。岩溶空间极不均一,可以从细小的溶孔直到巨大的溶洞。它们可彼此连通,成为沟通各种水源的通道,也可形成孤立的充水管道。我国许多金属与非金属矿区,都深受其害。要认识这种通道,关键在于能否确切地掌握矿区的岩溶发育规律和岩溶水的特征。

  (3)孔隙通道。孔隙通道,主要是指松散层粒间的孔隙输水。它可在开采矿床和开采上覆松散层的深部基岩矿床时遇到。前者多为均匀涌水,仅在大颗粒地段和有丰富水源的矿区才可导致突水;后者多在建井时期造成危害。此类通道可输送本含水层水入井巷,也可成为沟通地表水的通道。

  2.由于采掘活动等引起的人为涌水通道

  这类通道是由于不合理勘探或开采造成的,理应杜绝产生此类通道。

  (1)顶板冒落裂隙通道。采用崩落法采矿造成的透水裂隙,如抵达上覆水源时,则可导致该水源涌入井巷,造成突水。

  (2)底板突破通道。当巷道底板下有间接充水层时,便会在地下水压力和矿山压力作用下,破坏底板隔水层。形成人工裂隙通道,导致下部高压地下水涌入井巷造成突水。

  (3)钻孔通道。在各种勘探钻孔施工时均可沟通矿床上、下各含水层或地表水,如在勘探结束后对钻孔封闭不良或未封闭,开采中揭露钻孔时就会造成突水事故。



  (三)矿井突水预兆



  煤矿突水过程主要决定于矿井水文地质及采掘现场条件。一般突水事故可归纳为两种情况:一种是突水水量小于矿井最大排水能力,地下水形成稳定的降落漏斗,迫使矿井长期大量排水;另一种是突水水量超过矿井的最大排水能力,造成整个矿井或局部采区淹没。在各类突水事故发生之前,一般均会显示出多种突水预兆,下面分别予以介绍。

  1.一般预兆

  (1)煤层变潮湿、松软;煤帮出现滴水、淋水现象,且淋水由小变大;有时煤帮出现铁锈色水迹。

  (2)工作面气温降低,或出现雾气或硫化氢气味(即臭鸡蛋味)。

  (3)有时可闻到水的“嘶嘶”声。

  (4)矿压增大,发生片帮、冒顶及底臌。

  2.工作面底板灰岩含水层突水预兆

  (1)工作面压力增大,底板臌起,底臌量有时可达500mm以上。

  (2)工作面底板产生裂隙,并逐渐增大。

  (3)沿裂隙或煤帮向外渗水,随着裂隙的增大,水量增加,当底板渗水量增大到一定程度时,煤帮渗水可能停止,此时水色时清时浊:底板活动时水变浑浊,底板稳定时水色变清。

  (4)底板破裂,沿裂缝有高压水喷出,并伴有“嘶嘶”声或刺耳水声。

  (5)底板发生“底爆”,伴有巨响,地下水大量涌出,水色呈乳白或黄色。

  3.松散孔隙含水层水突水预兆

  (1)突水部位发潮、滴水、且滴水现象逐渐增大,仔细观察发现水中含有少量细砂。

  (2)发生局部冒顶,水量突增并出现流沙,流沙常呈间歇性,水色时清时浊,总的趋势是水量、沙量增加,直至流沙大量涌出。

  (3)顶板发生溃水、溃沙,这种现象可能影响到地表,致使地表出现塌陷坑。

  以上预兆是典型的情况,在具体的突水事故过程中,并不一定全部表现出来,所以应该细心观察,认真分析、判断。






  (五)有色矿山



  1.有色矿山各生产环节的危险源、危险点

  有色矿山露天作业危险源有:开采境界内存在未查明或查明后未处理的废弃巷道、采空区或溶洞,滑坡、山体移动和滚石等;井下作业的危险源有:采空区垮塌、大面积岩移、巷道冒顶、硫化矿物粉尘爆炸、坠井、跑溜等。装药和爆破作业中的危险源有:装药作业范围内存在杂散电流,明火或火种携带入爆区或爆破器材库等。提升运输过程中的危险源有:坠罐、蹲罐、高空坠物、过卷、跑车等;其他危险源有:地表和地下水、泥石流淹井或涌入矿坑,硫化矿物或碳质页岩、易燃物或可燃物、自燃、废石场泥石流和排土车辆的翻车、脱轨,尾矿库溃坝、移动、开裂、漫顶等,安全设施和装置失效。

  有色矿山各生产环节的危险点:地表和各水平井口,运输巷道交岔点,溜井井口、卸载点和振动放矿机硐室,回采和掘进作业面和作业平台,各类井筒梯子间,爆破器材库、加油站及易燃物和可燃物存放点,皮带道,露天坑底和边坡角附近,正在运行的运输车辆和设备周围。

  2.有色矿山事故的主要类型、原因及特点

  有色矿山事故的主要类型有:地压灾害、水害、火灾、爆破伤害、中毒与窒息等。

  (1)地压灾害的主要表现为露天滑坡,地下采场顶板大范围垮落、陷落和冒落,采空区大范围垮落或陷落,巷道或掘进工作面的片帮、冒顶等。产生地压灾害的主要原因有:回采顺序不合理,未及时处理采空区;采矿方法选择不合理和采场顶板管理不善;缺乏有效支护手段;检查不周和疏忽大意;浮石处理操作不当;矿岩地质条件差,节理裂隙发育,地应力大等。

  此类灾害发生与岩性、岩体结构及地质构造等矿岩工程地质条件、地压管理以及支护方式有密切关系,往往形成冲击地压、空气冲击波,造成不同程度的人员伤害和财产损失,引起岩层移动、地表下沉和建(构)筑物的破坏。

  (2)水灾事故的原因有:采掘过程中遇到含水的地质构造、老窿或地表水体,没有探水或探水工艺不合理;未及时发现突水征兆;降雨量突然加大,造成井下涌水量突然加大;没有或防排水设施设计、施工不合理;采掘工作面与地表水体、溶洞意外连通。

  此类灾害突发性强,发展快,造成的人员伤亡和财产损失大,矿井被淹,矿山全面停产。

  (3)有色矿山火灾根据发火的原因分为内因火灾和外因火灾。引起内因火灾的形成除矿岩本身有氧化自热特点外,还必须有聚热条件;当热量得到积聚时,必然产生升温现象;温度升高又导致矿岩加速氧化,发生恶性循环;当温度达到该物质的发火点时,则发生自燃火灾。内因火灾只能发生在具有自燃性矿床的矿山,且必须具备一定的条件,发火原因十分复杂;其初期阶段不易发现,很难找到火源中心的准确位置,扑灭此类火灾比较困难。

  引起外因火灾的发生原因有:各种明火引燃易燃物或可燃物;各类油料在运输、保管和使用时所引起的火灾;炸药在运输、加工和使用过程中发生的火灾;电气设备的绝缘损坏和性能不良引发的火灾;坑内外因火灾是在有限的空间和有限的空气流中燃烧,易于生成大量有毒有害气体,达到危害生命的浓度,极易造成重大事故。

  (4)造成爆破伤害、中毒和窒息的主要原因有:炸药性质和爆破器材不合格,在运输过程中遇到明火、高温物体,强烈振动或摩擦,发生意外情况;装药、起爆工艺不合理或违章操作;爆破器材库设计不合理,违章发放或存放爆破器材,存在能够引起爆炸的引爆源;违章作业或通风系统不合理、坑内标志不合理或无标志,导致作业人员进入或滞留在受炮烟污染的区域内;作业中突然遇到含有大量的窒息性气体、有毒有害气体、粉尘的地质构造,人员没有防护措施。

  此类灾害与违章作业和通风不畅有关,表现为突发性,救助过程和方式不合理的情况下有可能扩大事故。

  在开采过程中还存在粉尘、电危害、噪音与振动、机械伤害、物体打击、高处坠落和淹溺等危险危害因素。



  六、矿山安全检测



  1.风速测定

  (1)用风表测定风速。常用风表有杯式和翼式两种。

  (2)用热电式风速仪和皮托管压差计测定风速。热电式风速仪分热线式和热球式两种。热电式风速仪操作比较方便,但现有的热电式风速仪易于损坏,灰尘和湿度对它都有一定的影响,有待进一步改进以便在矿山广泛使用。

  (3)对很低的风速或者鉴别通风构筑物漏风时,可以采用烟雾法或嗅味法近似测定空气移动速度。

  (4)利用风速传感器测定。常用风速传感器有:超声波涡街式风速传感器、超声波时差法风速传感器、热效式风速传感器。

  2.矿井通风阻力的测定

  矿井通风阻力测定的方法一般有以下3种:精密压差计和皮托管的测定法、恒温压差计的测定法、空盒气压计的测定法。

  3.瓦斯检测

  瓦斯检测实际上是指甲烷检测,主要检测甲烷在空气中的体积浓度。矿井瓦斯检测方法有实验室取样分析法和井下直接测量法两种。使用便携式瓦斯检测报警仪,可随时检测作业场所的瓦斯浓度,也可使用瓦斯传感器连续实时地监测瓦斯浓度。煤矿常用的瓦斯检测仪器,按检测原理分类有:光学式、催化燃烧式、热导式、气敏半导体式等等,可以根据使用场所、测量范围和测量精度等要求,选择不同检测原理的瓦斯检测仪器。

  4.一氧化碳检测

  一氧化碳是剧毒性气体,吸入人体后,造成人体组织和细胞缺氧,引起中毒窒息。煤矿火灾、瓦斯和煤尘爆炸及爆破作业时都将产生大量的一氧化碳。为了矿工的身体健康,《煤矿安全规程》规定,井下作业场所的一氧化碳浓度应控制在24×10—6以下。煤矿常用的一氧化碳检测仪器有电化学式、红外线吸收式、催化氧化式等。

  5.氧气检测

  对于自然界生命,氧是不可缺少的,空气中氧含量降低会使人感到不适、甚至窒息。因此,《煤矿安全规程》对矿井氧气含量有严格规定。煤矿中检测氧气常用的方法主要有气相色谱法、电化学法和顺磁法。其中气相色谱仪一般安装在地面,通过人工取样分析矿井气体成分浓度。

  6.温度检测

  煤矿常用的温度传感器有热电偶、热电阻、热敏电阻、半导体PN结、半导体红外热辐射探测器、热噪声、光纤等。热电偶、热电阻原理在工业(地面)上早已得到广泛应用;半导体PN结原理在-100~+100 ℃范围内的应用也很成功,煤矿井下应用较多。

  7.烟雾检测

  火灾是煤矿重大灾害之一。因此建立、健全和装备防灭火装置,加强火灾监测,防止火灾事故,对保障煤矿安全具有重要意义。而烟雾检测是火灾检测的重要内容。

  8.开关量检测

  在煤矿监控系统中,开关量检测的地位和比重随着生产自动化水平的提高而提高,在工况、生产监控方面发挥着十分重要的作用。煤矿监控系统采用的开关量传感器主要有设备开停、风门开闭、馈电开关状态、风筒开关、温度湿度控制、有烟无烟、电流电压控制等。要保证监控系统的正常运行,必须加强对开关量的检测。

  9.检测仪表及传感器

  煤矿安全检测监控仪表的主要内容包括:对井下甲烷、一氧化碳、氧气等气体浓度的检测;对风速、风量、气压、温度、粉尘浓度等环境参数的检测;对生产设备运行状态的监测、监控等。检测仪表可以是机械式、化学式、光学式、电子式等。如U型压差计、机械风表、化学试纸、光干瓦斯检测仪等。但传感器一般都是电子式,将物理量变换成电信号后方能记录并传输。

  1)主要携带式测量仪表类型

  国内煤矿企业目前使用的安全检测仪表主要有:①光干涉瓦斯检定器,主要用于检测甲烷和二氧化碳,检测范围为0~10%、0~40%和0~100%。②热催化瓦斯检测报警仪,主要检测低浓度甲烷,检测范围0~5%。③智能式瓦斯检测记录仪,主要检测甲烷浓度,以单片机为核心,以载体催化元件及热导元件为敏感元件,用载体催化元件检测低浓度甲烷、热导元件检测高浓度甲烷,实现0~99%的全量程测量,仪器能自动修正误差。④瓦斯、氧气双参数检测仪,装有检测甲烷和氧气两种敏感元件,同时连续检测甲烷和氧气浓度。最新研制出四参数检测仪,同时测定甲烷、氧气、一氧化碳和温度,一氧化碳测量范围:(0~999)×10-6,甲烷测量范围:0~4%,氧气检测范围:0~25%,温度检测范围:0~40℃。⑤瓦斯报警矿灯,在矿灯上附加一瓦斯报警电路,即为瓦斯报警矿灯。仪器以矿灯蓄电池为电源,具有照明和瓦斯超限报警两种功能。现有数十种不同结构形式的产品,从报警电路的部位看,早期产品将电路装于蓄电池内,近期产品则将电路置于头灯或矿帽上。有的装在矿帽前方,有的装在矿帽后部,还有装在矿帽两侧的。一氧化碳检测报警仪,能连续或点测作业环境的一氧化碳浓度,仪器开机即可检测,检测范围:(0~2000)×10-6。

  2)主要矿用传感器类型

  目前国内矿用传感器主要采用12~24VDC直流供电,普遍采用本质安全型,通常都具有连续自动将待测物理量转换成标准电信号输送给关联设备、并提供就地显示、超限报警等功能,有的还具有遥控调校、断电控制、故障自校自检等功能(如煤科总院重庆分院生产的系列传感器)。传感器模拟量输出信号通常采用200~1000 Hz、1~5 mA标准信号,开关量输出1 mA/5mA(二线制);±5mA、0V/5V(四线制)等标准信号。传感器信号输送距离一般不小于1 km。

  传感器主要有以下类型:

  (1)智能低浓度甲烷传感器,稳定性指标为1~3周,元件使用寿命为1~1.5年。测量范围:0~4.00%(或0~10.0%)。

  (2)智能高低浓度甲烷传感器,与低浓度甲烷传感器相比,增加了热导式高浓度甲烷敏感元件。低浓度时仍采用热催化元件,浓度超过4%时自动切换到热导元件输出,切断热催化元件工作电源,以此达到保护热催化元件免受高浓度甲烷冲击中毒事件发生。传感器测量范围为:0~40.0%。

  (3)一氧化碳传感器,检测范围为(0~999)×10—6,敏感元件寿命不小于2年。

  (4)风速传感器,主要安装在测风站、进回风巷和采区工作面等,监测井巷风速风向。测量范围一般为:0.3~15m/s。

  (5)电气设备开停传感器,主要用于连续监测煤矿井下供电电流大于5A的各种机电设备的开停状况。

  (6)馈电传感器,主要监测动力电缆电源是否被切断,配合断电器使用,能及时反馈断电器是否确已有效实施断电功能。
作者: musecao    时间: 2007-3-27 19:42
xiexie
作者: tuya    时间: 2007-4-19 23:34
挺好,正需要




欢迎光临 安全评价论坛 (https://bbs.51anping.com/) Powered by Discuz! X2.5